Skip to content

Higgs Boson

05/07/2012

What it is, why it is important and how they have ‘found’ it

  • WHAT IS IT?

  • WHY IS IT IMPORTENT?

  • WHAT IS THE GOD PARTICLE ANYWAY?

  • WHY IS THIS IMPORTANT?

  • HOW MUCH DID IT COST?

  • WERE THERE ANY PRACTICAL RESULTS FROM THE SEARCH?

  • WHAT’S NEXT

  •  HOW IT CONNECT HINDU SASTHARAM  (Gayatri Mantra)

WHAT IS IT?

The Higgs boson was summoned into theoretical existence to plug a hole in the ‘standard model’ of particle physics.
The model has been hugely successful – it can provide explanations and make predictions about how the counter-intuitive quantum world of particles works.
But it couldn’t explain one thing – why the universe has mass.
It’s a crucial omission because, without it, there’s no gravity and, without gravity, the roiling soup of particles spat out by the Big Bang would never have coalesced to form the stars and planets. In fact, nothing would exist.
The Higgs boson is seen as the answer to this problem. It is the physical emissary of an all-pervading field that interacts with matter to give it the mass that the universe so desperately needs.
If we can’t find the Higgs, it means that there is an entirely new set of as yet undiscovered truths waiting to be uncovered – and that’s almost more mesmerising.
Exciting, isn’t it?

WHY IS IT IMPORTENT?

Scientists working at the world’s biggest atom smasher near Geneva have announced the discovery of a new subatomic particle that looks remarkably like the long-sought Higgs boson. Sometimes called the “God particle” because its existence is fundamental to the creation of the universe, the hunt for the Higgs involved thousands of scientists from all over the world.

WHAT IS THE GOD PARTICLE ANYWAY?

School physics teaches that everything is made up of atoms, and inside atoms are electrons, protons and neutrons. They, in turn, are made of quarks and other subatomic particles. Scientists have long puzzled over how these minute building blocks of the universe acquire mass. Without mass, particles wouldn’t hold together and there would be no matter.
One theory proposed by British physicist Peter Higgs and teams in Belgium and the United States in the 1960s is that a new particle must be creating a “sticky” field that acts as a drag on other particles. The atom-smashing experiments at CERN, the European Center for Nuclear Research, have now captured a glimpse of what appears to be just such a Higgs-like particle.

WHY IS THIS IMPORTANT?

The Higgs is part of many theoretical equations underpinning scientists’ understanding of how the world came into being. If it doesn’t exist, then those theories would need to be fundamentally overhauled. The fact that it apparently does exist means scientists have been on the right track with their theories. But there’s a twist: the measurements seem to diverge slightly from what would be expected under the so-called Standard Model of particle physics. This is exciting for scientists because it opens the possibility to potential new discoveries including a theory known as “super-symmetry” where particles don’t just come in pairs — think matter and anti-matter — but quadruplets, all with slightly different characteristics.

HOW MUCH DID IT COST?

CERN’s atom smasher, the Large Hadron Collider, alone cost some $10 billion to build and run. This includes the salaries of thousands of scientists and support staff around the world who collaborated on the two experiments that independently pursued the Higgs.

WERE THERE ANY PRACTICAL RESULTS FROM THE SEARCH?

Not directly. But the massive scientific effort that led up to the discovery has paid off in other ways, one of which was the creation of the World Wide Web. CERN scientists developed it to make it easier to exchange information among each other. The vast computing power needed to crunch all of the data produced by the atom smasher has also boosted the development of distributed — or cloud — computing, which is now making its way into mainstream services. Advances in solar energy capture, medical imaging and proton therapy — used in the fight against cancer — have also resulted from the work of particle physicists at CERN and elsewhere.

WHAT’S NEXT

“This is just the beginning,” says James Gillies, a spokesman for CERN. Scientists will keep probing the new particle until they fully understand how it works. In doing so they hope to understand the 96 percent of the universe that remains hidden from view. This may result in the discovery of new particles and even hitherto unknown forces of nature.

 HOW IT CONNECT HINDU SASTHARAM  (Gayatri Mantra)

There is a story in Hinduism on how Sage Vishwamitra attained the knowledge of Brahman(Ever Prevailing) and Hence called as Brahmarishi. He Described that in beautiful verses Known as Gayatri Mantra:
Om: I Salute, that prevails in Bhu bhuva suvah (Protons,Electrons & Neutrons) Tat (That) Savitu (Brightest) Varenyam(Having Greatest Power) Bhargo (highly spreading radiance (similar to nucleus)) Devasya (That lord) Dhimahi(meditate) Dhi (mind) yo nah(towards) Prachadoyat (put in motion). OR he says “Let us Meditate on the Greatest, Brightest, Highly spreading Particle that exists in protons, electrons and neutrons to achieve our Goal”
Just a Thought!
…………………………………………………………
Higgs boson closer than ever
Ever since CERN announced that it had spotted a Higgs boson-like particle on July 4, 2012, their flagship Large Hadron Collider (LHC), apart from similar colliders around the world, has continued running experiments to gather more data on the elusive particle.

The latest analysis of the results from these runs was presented at a conference now underway in Italy.

While it is still too soon to tell if the one spotted in July 2012 was the Higgs boson as predicted in 1964, the data is convergent toward the conclusion that the long-sought particle does exist and with the expected properties. More results will be presented over the upcoming weeks.

In time, particle physicists hope that it will once and for all close an important chapter in physics called the Standard Model (SM).

The announcements were made by more than 15 scientists from CERN on March 6 via a live webcast from the Rencontres de Moriond, an annual particle physics forum that has been held in La Thuile, Italy, since 1966.

“Since the properties of the new particle appear to be very close to the ones predicted for the SM Higgs, I have personally no further doubts,” Dr. Guido Tonelli, former
spokesperson of the CMS detector at CERN, told The Hindu .

Interesting results from searches for other particles, as well as the speculated nature of fundamental physics beyond the SM, were also presented at the forum, which runs from March 2-16.

A precise hunt

A key goal of the latest results has been to predict the strength with which the Higgs couples to other elementary particles, in the process giving them mass.

This is done by analysing the data to infer the rates at which the Higgs-like particle decays into known lighter particles: W and Z bosons, photons, bottom quarks, tau leptons, electrons, and muons. These particles’ signatures are then picked up by detectors to infer that a Higgs-like boson decayed into them.

The SM predicts these rates with good precision.

Thus, any deviation from the expected values could be the first evidence of new, unknown particles. By extension, it would also be the first sighting of ‘new physics’.

Good and bad news

After analysis, the results were found to be consistent with a Higgs boson of mass near 125-126 GeV, measured at both 7- and 8-TeV collision energies through 2011 and 2012.

The CMS detector observed that there was fairly strong agreement between how often the particle decayed into W bosons and how often it ought to happen according to theory. The ratio between the two was pinned at 0.76 +/- 0.21.

Dr. Tonelli said, “For the moment, we have been able to see that the signal is getting stronger and even the difficult-to-measure decays into bottom quarks and tau-leptons are beginning to appear at about the expected frequency.”

The ATLAS detector, parallely, was able to observe with 99.73 per cent confidence-level that the analysed particle had zero-spin, which is another property that brings it closer to the predicted SM Higgs boson.

At the same time, the detector also observed that the particle’s decay to two photons was 2.3 standard-deviations higher than the SM prediction.

Dr. Pauline Gagnon, a scientist with the ATLAS collaboration, told this Correspondent via email, “We need to asses all its properties in great detail and extreme rigour,” adding that for some aspects they would need more data.

Even so, the developments rule out signs of any new physics around the corner until 2015, when the LHC will reopen after a two-year shutdown and multiple upgrades to smash protons at doubled energy.

As for the search for Supersymmetry, a favoured theoretical concept among physicists to accommodate phenomena that haven’t yet found definition in the Standard Model: Dr. Pierluigi Campana, LHCb detector spokesperson, told The Hindu that there have been only “negative searches so far”.
Vasudevan Mukunth

Advertisements

From → Digital

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: